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1 Experimental Protocols

For the INa experiments HEK-293 cells stably transfected with hNaV1.5 cDNA were continuously maintained

in a humidified, gassed (∼5% CO2) incubator at approximately 37℃, and passaged using Dulbecco’s Modified

Eagle Medium (DMEM) supplemented with 10% foetal bovine serum, 1% non-essential amino acids, 1% peni-

cillin/streptomycin and 0.4 mg/mL geneticin. For the ICaL experiments myocytes were isolated enzymatically

from guinea-pig ventricle as previously described21. Briefly, male guinea-pigs were killed by cervical dislocation

following stunning. Myocytes were isolated after perfusion of the heart with a physiological salt solution con-

taining reduced calcium and 0.8 mg/mL of collagenase Type 1 (Worthington Biochemicals). Cells were stored

at room temperature in Dulbecco’s MEM (Life Technologies, Scotland) and used for electrophysiological inves-

tigation on the day of preparation. For the IKr experiments HEK-293 cells stably transfected with hERG cDNA

were obtained from the University of Wisconsin. The cells were continuously maintained in, and passaged,

using minimum essential medium supplemented with 10% foetal bovine serum, 1% non-essential amino acids,

1% sodium pyruvate, 1% penicillin/Streptomycin and 0.4 mg/ml geneticin. The cells were seeded onto glass

coverslips in 35 mm2 dishes (containing 3 ml medium without geneticin) at a density that enabled isolated cells

to be selected for patch-clamping.

The conventional whole-cell patch-clamp configuration was used to record membrane currents at room tem-

perature via AxoPatch 200B preamplifiers, and data acquisition and analysis were controlled by Axon pClamp

software.

For the ICaL experiments, the composition of the bath solution was (in mM): NaCl 125; NaHCO3 25; KCl 5.4;

CaCl2 1.8; MgCl2 1.0; NaH2PO4 1.2; D-glucose 5.5; CsCl 5.0; pH 7.4 when bubbled with 95% O2 and 5% CO2;

the composition of the pipette solution was (mM): CsCl 120; TEACl 20; MgCl2 5.5; EGTA 5.0; ATP-Na2 5.0,

HEPES 20; phosphocreatine 5.0; pH 7.2 with 1M CsOH.

For the INa experiments, the composition of the bath solution was (mM): NaCl 40; CsCl 97; KCl 4.0, CaCl2

1.8; MgCl2 1.0; D-glucose 10; HEPES 10; pH 7.4 with 1M CsOH; the composition of the pipette solution was

(mM): CsCl 130; MgCl2 5.0; EGTA 5.0; MgATP 4.0; GTP 0.1, HEPES 10; pH 7.2 with 1M CsOH.

The voltage protocols for studying the concentration-dependent effect of the compounds on peak current were

as follows. For INa, a step from −100 mV (holding potential) to −30 mV for 20 ms, then step back to a holding

potential of −100 mV. For ICaL, a step from −40 mV (holding potential) to 0 mV for 400 ms, and then stepped

back to the holding potential of −40 mV. The pulses were applied at frequencies of 0.1 and 0.2 Hz for INa and

ICaL respectively. Peak INa was measured with respect to the holding current measured at −100 mV just before

the step depolarisation and peak ICaL amplitude was measured relative to the holding current at −40 mV. For

IKr, the holding potential was −80 mV. The step from −80 mV to the test command (+20 mV, 5 s) activated

hERG channels and the step from the test command (+20 mV) to −50 mV (5 s) resulted in the tail current,

whose amplitude was measured. The testing pulses were applied at 15 s intervals. These protocols were used

to construct concentration-response curves.
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Experiments were performed at Safety Pharmacology, GlaxoSmithKline. The investigation conforms with the

Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH

Publication No. 85-23, revised 1996). All animals were treated in accordance with UK Home Office regulations

(Animals (Scientific Procedures) Act 1986: London: Her Majesty’s Stationery Office 1986) and the work was

approved by internal ethical review.
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2 Simulation Protocols

In this section we describe the three protocols under which the models were used to simulate cellular responses,

and state the model outputs that we have taken as potential in-silico risk indicators. We correlated these

markers against the TdP risk categories as described in section 2.4 of the main text and section 3.1 of this

document, in order to establish those markers that provided an indication of risk.

Firstly, we considered the membrane voltage under regular pacing. Models were paced at 1Hz for 1000 seconds

in order to obtain an approximately steady behaviour. The final AP was analysed and the maximum upstroke

velocity (proportional to peak current), peak membrane voltage, and APD at 50% and 90% repolarisation

were recorded, along with APD90 minus APD50 as measure of ‘triangulation’. The cytosolic calcium transient

corresponding to this AP was also analysed; peak calcium, 50% duration, 90% duration and triangulation of

the transient were recorded.

Secondly, the S1-S2 restitution protocol, was performed on the models. 1Hz was chosen as the S1 pacing

frequency and the models were again paced for 1000 seconds in order to obtain a steady state before the

protocol began. Results were analysed to determine the maximum slope of the restitution curve.

Finally, a dynamic restitution protocol was performed. This consisted of 100 paces at varying frequencies from

1Hz up to 10Hz. The final eight action-potential traces at each frequency were analysed to detect voltage

alternans and the frequency at which depolarisation occurred before 90% repolarisation had completed (i.e.

the frequency at which non-spontaneous EADs were induced), the highest pacing cycle length at which either

occurred was recorded as the ‘instability onset’. The maximum slope of the dynamic restitution curve was

recorded. The area between the control and drug-blocked dynamic restitution curves was also recorded; this

measure is intended to quantify the change in APD over a range of pacing frequencies.

The full list of the 15 simulated markers is:

1. Steady-State 1Hz pacing

• APD90

• APD50

• APD Triangulation

• Peak membrane voltage

• Maximum upstroke velocity

• Ca duration 90

• Ca duration 50

• Ca triangulation

• Peak Ca
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2. S1-S2 Restitution

• Maximum slope

3. Dynamic Restitution

• Maximum slope

• Alternans onset pacing frequency

• (non-spontaneous) EAD onset frequency

• Instability onset frequency

• Area between control and drug curves

The tolerances of CVODE were set as: relative, 10−5; absolute, 10−7. The simulations involved in determining

the 1Hz APD90 for the Grandi et al. model for a compound at a particular concentration, and the subsequent

classification of the compound into a risk category, can be completed in under one minute on a single core of a

desktop PC (an Intel Core2 Duo 3GHz desktop PC was used). We propose that the calculation be performed

for a range of concentrations, informing the therapeutic doses at which the compound may be used safely.
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3 Details of Statistical Methods

In this section we provide more details on the statistical methods used to evaluate the predictive power of the

different markers. Section 3.1 provides details of the implementation of the LDA technique, and section 3.2

provides details of validation techniques used to ensure that the predictive power of our markers was not down

to chance.

3.1 Linear Discriminant Analysis Implementation

We assemble a large matrix of training data X from distinct categories k = 1 . . .K (in our case K = 4 — the

number of risk categories after combining 1 and 2 due to their equal risk). Each row i of X represents a drug,

and each column j contains a ‘discriminant variable’ — one of our measures (e.g. hERG IC50 or simulated

APD90 from a particular model). Here we follow the notation of Hastie et al. 80 , to whom we refer the interested

reader to their section 4.3 for a full derivation of this technique.

Our prior distributions (the likelihood that a drug belongs to a particular category) are set equal and given as

πk = 1/K, (1)

If the mean value of our measures for the training points in category k is denoted by the vector µk, then the

‘pooled’ or ‘common’ covariance matrix is given by

Σ =

K∑
k=1

∑
∀i∈k

(Xi − µk) (Xi − µk)
T
/ (N −K) . (2)

whereN is the total number of drugs and Xi is a vector of measures for a particular drug. The linear discriminant

functions for each category are then given by

δk(y) = yTΣ−1µk − 1

2
µT
k Σ−1µk + ln πk. (3)

A new observation y is then classified to the category k for which the discriminant function δk(y) is largest.

Notice that for the 1D markers presented in the main text Xk is a column vector. We demonstrate briefly how

this method works in Figure S1.

In the bottom panel of Figure S1 we see a set of training data from four distinct categories, distributed along a

one dimensional variable ‘y’. LDA is derived based on the assumption that the training data in each category are

normally distributed, with each category having a different mean but a common covariance matrix. Our dataset

is not large enough to test whether the points in each category follow a normal distribution, yet in practice

LDA has been found to work well for many distributions80. LDA then uses maximum likelihood estimates to

calculate the probability of each point in y-space being a member of each category. The resulting probability

of an unseen observation belonging to each of the categories is shown in the top panel of Figure S1. To classify

an unseen observation we simply assign it to the category with the highest probability at that point.
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Figure S1: An example of how linear discriminant analysis classifies points in variable space into distinct cat-

egories. Bottom: a set of 1D training variables taken from four distinct categories. Top: the

probability of being classified into each category at each point in (1D) variable space, each point in

variable space would be classified into the category k with the largest discriminant function δk(y)

(or equivalently probability) at that point.

3.2 Cross-validation

Despite the fact that the errors in classification as shown in Figure 4 of the main text are entirely independent

of the training data (because of the N-fold cross validation/‘leave-one-out validation’), a possible criticism of

our approach would be that we tried many different markers, and the success of the best-performing one was

purely by chance. We have evaluated the predictive power that such ‘random guesses’ for the categories would

provide. In Figure S2 we plot the resulting error for 1,000; 10,000; 100,000 and 1,000,000 random guesses: none

of the resulting errors are as small as those of the simulated marker suggested in the main text. This finding

suggests that the measure has strong predictive power and has not been successful ‘by chance’.

The fact that the distribution shown in Figure 5 in the main text shows a clear bias towards “being predictive”,

rather than “being random” (as plotted in Figure S2) provides further evidence that our approach is indeed

producing predictive power and our findings are not a chance result. Indeed the 30 “most predictive” markers

listed in Supplementary Material 4, and shown in bold on Figure 5 of the main text, are all multi-channel

markers. None of the hERG-only markers were as accurate, providing further evidence that the multichannel

simulations are not outperforming the existing measures by chance.

Yet, we acknowledge that the choice of best marker was strongly dependent on the dataset. In order to ascertain

whether our measure of Grandi et al. 26 APD90 was robust to the different datasets of drugs we split them into

separate groups for K-fold cross validation of the marker choice. Although Hastie et al. 80 suggest that K is
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generally taken to be between 5 and 10 we use K = 4 because we only have four drugs in category 2.

1. Quinidine (1), Ajmaline (1), Cisapride (2), Pimozide (3), Fluvoxamine (4), Mibefradil (4), Risperidone (5),

Nitrendipine (5).

2. Amiodarone (1), Terfenadine (2), Sertindole (3), Bepridil (3), Desipramine (4), Amitryptyline (4), Nifedip-

ine (4), Cibenzoline (5), Verapamil (5).

3. Dofetilide (1), Prenylamine (2), Chlorpromazine (3), Diphenhydramine (4), Imipramine (4), Phenytoin

(5), Propranolol (5).

4. Tedisamil (1), Thioridazine (2), Haloperidol (3), Propafenone (4), Mexiletine (4), Quetiapine (4),

Diltiazem (5).

These groups were chosen so that each contained roughly equal numbers of drugs from each of the risk categories

(as shown in brackets after the drug name). The stratified training datasets were then formed by ‘leave-one-

group-out’: so stratification set 1 was formed from groups 2, 3, 4, stratification set 2 from groups 1, 3, 4 etc. This

was necessary to ensure that each risk category contained a number of points with which to ‘train’ the LDA

method.

The method referred to in the main text (individual ‘leave-one-out’ for each compound, LDA, and finally

classification) was then performed for each of these stratified training datasets. We subsequently ranked the

predictive power of each marker in each of the training datasets.

In Figure S3 we present the same data as in the main text’s Figure 5 for each of the stratified datasets. The

top 30 markers for the full dataset are again shown in bold. We see that the most predictive measures are

relatively robust across the different stratifications, and in particular our best measure Grandi et al. 26 APD90

as designated by the dotted lines) consistently outperforms both the existing measure (dashed lines) and random

guesses (solid lines).

In addition to the experiment displayed in the main text we also performed a 2D LDA analysis for every

combination of the 761 1D markers (289180 in total). The result of this was a slight improvement over the

1D markers (as shown in Figure S4), but a possible loss of consistency between stratified groups as shown in

Figure S5 (it is possible that out of so many markers “predictive” ones appear by chance, as shown in Figure 2(c)

for 100,000 random category guesses). For this reason the main text refers only to the more robust 1D markers.
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(a) 1,000 evaluations
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(b) 10,000 evaluations
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(c) 100,000 evaluations
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(d) 1,000,000 evaluations

Figure S2: Classification errors resulting from (a) 1, 000; (b) 10, 000; (c) 100, 000; and (d) 1, 000, 000 sets of

random guesses for the drug risk categories. The mean values on each plot are given by solid lines,

and the errors given by the 1D simulated marker (Figure 5 in the main text) are shown by dashed

lines. It appears that categorisation at random has far less than 1 in a million chance of performing

as well as the simulated marker. The ‘patterns’ arise because there are a limited number of possible

mean and standard deviations in errors with a fixed number of drugs.
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Figure S3: Scatter plot of classification error for all of the different markers for stratified datasets. The most

predictive markers for the full dataset, as shown in bold in Figure 5 of the main text , are again

shown here in bold for the four stratified datasets. Simulated markers from hERG-only block are

denoted with ‘∗’ whilst multichannel block markers are denoted by ‘◦’. Solid lines indicate the

expected values if classification was performed at random, dashed lines are the values given by

log10([hERG IC50]/[EFTPC High]), dotted lines are the values for the longest APD90 from simu-

lations of Grandi et al. 26 at low/med/high EFTPC, it provides a consistent improvement over the

existing safety factor.
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Figure S4: Scatter plot of classification error for all of the different 2D markers. Simulated markers where both

are from hERG-only block are denoted with ‘∗’ whilst multichannel block or mixed markers are

denoted by ‘◦’. Solid lines indicate the expected values if classification was performed at random,

dashed lines are the values given by log10([hERG IC50]/[high EFTPC]), dotted lines are the values

given by the best 1D marker as shown in Figure 3(b) of the main text . Again, all of the 30 most

predictive 2D markers result from multichannel simulations and these are denoted with bold markers.
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Figure S5: Scatter plot of classification error for all of the different 2D markers for stratified datasets. The

most predictive markers for the full dataset, as shown in bold in Figure S4 of the main text, are

again shown here in bold for the four stratified datasets. Where both simulated markers are from

hERG-only block they are denoted with ‘∗’ whilst multichannel block or mixed markers are denoted

by ‘◦’. Solid lines indicate the expected values if classification was performed at random, dashed

lines are the values given by log10([hERG IC50]/[EFTPC High]), dotted lines are the values from

the 1D measure (the longest APD90 from simulations of Grandi et al. 26 at low/med/high EFTPC).
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4 Most predictive markers

The 30 most predictive markers resulting from the LDA leave-one-out trial are shown in Table S1. Notice that

all are from multi-channel block simulations, and the majority are measures associated with AP prolongation.

All of these markers provide risk predictions which have less than half of the error in classification that the

current best-practise marker exhibits, as shown in Figure 5 of the main text.

Error in category Discriminant Measure

Mean Std. Dev.

0.323 0.541 Grandi et al. APD90 EFTPC with largest effect

0.355 0.551 Shannon et al. (2004) Peak Ca EFTPC with largest effect

0.387 0.558 Shannon et al. (2004) APD50 Medium EFTPC

0.387 0.615 Shannon et al. (2004) Dynamic EAD Start Freq EFTPC with largest effect

0.419 0.564 ten Tusscher & Panfilov (2006) APD50 Medium EFTPC

0.419 0.620 Shannon et al. (2004) Peak Ca High EFTPC

0.419 0.620 Shannon et al. (2004) Dynamic Max Slope EFTPC with largest effect

0.419 0.620 Shannon et al. (2004) Dynamic Area Between Curves High EFTPC

0.419 0.620 Hund & Rudy (2004) Dynamic Alternans Start Freq EFTPC with largest effect

0.419 0.620 Hund & Rudy (2004) Dynamic Instability Onset Freq EFTPC with largest effect

0.419 0.620 Grandi et al. (2010) Dynamic Area Between Curves Medium EFTPC

0.419 0.672 Shannon et al. (2004) APD50 High EFTPC

0.419 0.672 Shannon et al. (2004) Dynamic EAD Start Freq Medium EFTPC

0.419 0.672 Grandi et al. (2010) Dynamic Area Between Curves High EFTPC

0.452 0.568 Shannon et al. (2004) APD90 Medium EFTPC

0.452 0.568 Shannon et al. (2004) Peak Ca Medium EFTPC

0.452 0.568 Shannon et al. (2004) Dynamic Area Between Curves Medium EFTPC

0.452 0.568 Grandi et al. (2010) Dynamic Area Between Curves EFTPC with largest effect

0.452 0.624 Shannon et al. (2004) APD90 High EFTPC

0.452 0.624 Shannon et al. (2004) Dynamic Area Between Curves EFTPC with largest effect

0.452 0.624 ten Tusscher & Panfilov (2006) APD90 High EFTPC

0.452 0.624 ten Tusscher & Panfilov (2006) APD50 High EFTPC

0.452 0.624 ten Tusscher & Panfilov (2006) Dynamic Area Between Curves Medium EFTPC

0.452 0.624 Hund & Rudy (2004) Dynamic Instability Onset Freq Low EFTPC

0.452 0.624 Grandi et al. (2010) APD50 EFTPC with largest effect

0.484 0.570 Shannon et al. (2004) CaD90 Medium EFTPC

0.484 0.626 Shannon et al. (2004) APD90 EFTPC with largest effect

0.484 0.626 Shannon et al. (2004) APD50 EFTPC with largest effect

0.484 0.626 ten Tusscher & Panfilov (2006) APD90 Medium EFTPC

0.484 0.626 Hund & Rudy (2004) Dynamic Instability Onset Freq Medium EFTPC

Table S1: The 30 most predictive 1D measures, as highlighted in bold in Figure 5 of the main text. All are

multi-channel simulated markers.
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5 Classification Errors

The errors in Table S2 resulted from leave-one-out, linear discriminant analysis, when classifying according to

Grandi et al. largest APD90 at any EFTPC.

Generic APD90 Risk Category Error

Drug Name Change (ms) Actual Predicted (categories)

Ajmaline 2.37 2 3 1

Amiodarone 0.37 2 4 2

Dofetilide 12.51 2 2 0

Quinidine 26.68 2 2 0

Tedisamil 1.40 2 3 1

Cisapride 19.71 2 2 0

Prenylamine 6.75 2 3 1

Terfenadine 18.01 2 2 0

Thioridazine 18.31 2 2 0

Bepridil 2.82 3 3 0

Chlorpromazine 1.14 3 3 0

Haloperidol 4.62 3 3 0

Pimozide 1.26 3 3 0

Sertindole 4.24 3 3 0

Amitriptyline -0.01 4 4 0

Desipramine -1.27 4 4 0

Diphenhydramine 0.22 4 4 0

Fluvoxamine -0.28 4 4 0

Imipramine -0.12 4 4 0

Mexiletine -0.60 4 4 0

Mibefradil -5.21 4 4 0

Nifedipine -6.91 4 5 1

Propafenone 0.38 4 4 0

Quetiapine -0.09 4 4 0

Cibenzoline -0.85 5 4 1

Diltiazem -14.36 5 5 0

Nitrendipine -29.51 5 5 0

Phenytoin -3.35 5 4 1

Propranolol 0.31 5 4 1

Risperidone 0.51 5 4 1

Verapamil -20.75 5 5 0

Table S2: Classification errors resulting from use of the most predictive measure, there are compiled into a

histogram to make Figure 4(d) in the main text.
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37. Köppel C, Oberdisse U, Heinemeyer G. Clinical course and outcome in class IC antiarrhythmic overdose.

Clinical Toxicology 1990;28:433–444.

38. Grima M, Schwartz J, Spach MO, Velly J. Anti-anginal arylalkylamines and sodium channels:[3H]-

batrachotoxinin-A 20-alpha-benzoate and [3H]-tetracaine binding. British journal of pharmacology 1986;

89:641–646.

39. Lubic SP, Nguyen KPV, Dave B, Giacomini JC. Antiarrhythmic agent amiodarone possesses calcium

channel blocker properties. Journal of Cardiovascular Pharmacology 1994;24:707–714.

40. Leffler A, Reiprich A, Mohapatra DP, Nau C. Use-dependent block by lidocaine but not amitriptyline

is more pronounced in tetrodotoxin (TTX)-Resistant Nav1. 8 than in TTX-sensitive Na+ channels. J

Pharmacol Exp Ther 2007;320:354–364.
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